
Self-Playing Guitar
Pedro Contipelli

Department of Computer Science
University of Central Florida

Orlando, USA

Ethan Partidas
Department of ECE

University of Central Florida
Orlando, USA

Blake Cannoe
Department of ECE

University of Central Florida
Orlando, USA

Jon Catala
Department of ECE

University of Central Florida
Orlando, USA

Kyle Walker
Department of ECE

University of Central Florida
Orlando, USA

Abstract—This paper details the planning, prototyping, and
final construction of Group 30’s Senior Design Project titled
“Self-Playing Guitar” for UCF term Spring 2023. The goal
of the project is to take an acoustic guitar, outfit it with
appropriate hardware and program said hardware so as to allow
the performance of music with the use of input MIDI files. Before
designing the project, a background investigation on existing
technologies was performed in order to narrow the scope of
the design to something that could be clearly written to and
visualized. Once the initial component selection was determined,
prototyping began to develop a minimum viable product. Finally,
once the proof of concept was complete, proving that the product
could be designed, construction of the final design began. The
final project is to be completed by the end of Spring 2023,
presented between the days of April 17th and April 19th.

Index Terms — Microcontrollers, Microprocessors, Music,
Servomechanisms, Synchronous Signals

I. INTRODUCTION

This document outlines the ideas, motivations, design con-
siderations, and implementation details of ECE Group 30
CS Group 22’s Senior Design project. The end goal was
ultimately to build a fully functional self-playing guitar using
a combination of both hardware and software implementation
principles. Due to the nature of the project being that it
requires both mechanical and computer science principles, the
project - and by extension, this group - is interdisciplinary.
Our main objective is to be able to take any valid MIDI file
and play those notes by fretting and strumming all 6 strings
independently on an acoustic guitar (without self-interference).
Specifications include being able to play all 29 valid notes
between E2 and G#4, giving us a range of about 2.33 octaves.

We will accomplish this by using a custom algorithm written
in Python to take MIDI data and convert it in realtime to
playable notes on the guitar the exact start timing and duration
of each note. This code will then run on a microprocessor
that is connected to both the strumming motor assembly and
fret motor assembly. The strumming assembly will consist of
6 servo motors positioned to pluck at each string. And the
fret motor assembly will consist of servo motors with linear
actuators positioned at fret locations 1-4 on each string. In
total, giving us 30 unique playable combinations = 6 strings *

(4 fret positions + 1 open string) and totaling 29 unique notes
(B3 is repeated), as demonstrated in the below calculation.

6 ∗ (4 + 1)− 1 = 29 (1)

As this is a student-led and self-sponsored project, our
budget was mostly limited to what we as students can afford:
We initially estimated that it would cost around $200 across
the 5 of us. There are little to no consumer products available
at the moment which do this - However, there are a few
hobbyists who have built similar machines as personal projects
and posted videos of it on YouTube. Essentially, all projects
of this nature are simply built for fun, entertainment, and as
a personal challenge rather than for mass consumption. Our
initial rough timeline of the project as of the end of Senior
Design 1 is as follows: The final design document report would
be completed by the end of Senior Design 1 on December 5th
2022, our minimum viable product ready by halfway through
Senior Design 2 on February 24th 2023, and we aimed to have
the final product ready and presentable by one month before
the end of Senior Design 2 on March 24th 2023. The project
additionally is to be presented on March 31st 2023 as part of
STEM day.

II. PROJECT DESCRIPTION

The below section serves as the detailing of our project. It
provides an overview of the project and personal motivations
before going into detail about its goals and the objectives
we have laid out in order to achieve them. In order, the
section provides an overview of the project, which then leads
into the specific goals that we wish to achieve to realize our
design. Following that are the specific objectives we have laid
out in pursuit of those goals before going into the specific
requirement specifications that we will adhere to throughout
our time in Senior Design in order to ensure that the project
works as intended and is fully reproducible and testable. The
section ends off with supplemental material in order to better
elucidate the broad strokes in what the project will ultimately
look like.

A. Overview

The goal of this project is to create an autonomous self-
playing guitar that is able to produce its own music. The
system would be able to take in MIDI files and play the notes
on the guitar using separate mechanisms for strumming and
pressing select strings against frets. It would be lightweight
and maintain the general form factor of the guitar (i.e, fits
closely to the body). The design should ideally be portable,
and thus it would be powered by portable batteries. It should
be responsive enough to accurately replicate the provided
MIDI file compositions, comparable to - if not exceeding
- the abilities of the average learnt guitar player. Not only
should this design be lightweight and portable, an issue with
similar concepts is the price and size. They are typically not
an attachment for a guitar and are more commonly an entire
unit within the guitar. They are also extremely expensive with
some models going for up to $1,100. Our goal for this project
is to bring this idea to reality for significantly cheaper.

B. Design Goals

Our ultimate goal for this project is to modify a guitar with
electronics to be able to play itself. In pursuit of this we want
our project to be:

• Able to reliably play digital audio data. This is the
ultimate factor that will determine the functionality of
our product. It should be able to take data in, interpret
that data as musical notes, and then play those notes using
the guitar that the design is built on.

• Portable. We want our design to fit the general form factor
of a guitar, not departing from how a guitar looks; we
don’t want to create a device for the machine floor, but
rather still want it to resemble a guitar once all is said
and done.

• Affordable. As we are a collection of undergraduate uni-
versity students, we want to minimize the cost investment
into the product - especially for prototyping and moving
from the minimum viable product to final presentation.

• Lightweight. We do not want the design to weigh too
much. We still want the product to be held like a guitar,
and too much weight would take away from that.

• Reliable. Ideally, we would want our design to require
as little maintenance as possible in order to present to
the Senior Design board. A high enough fault rate would
consume too much time to fix which would be better
spent prototyping and refining the final product.

C. Objectives

In order to realize the above goals, we laid out the following
objectives to guide our design. The project must:

• Be built on an acoustic guitar
• Be battery powered
• Take MIDI file input over USB
• Process MIDI files using a Microcontroller
• Play a wide range of notes
• Utilize servos for mechanical action (strumming and

fretting)

• Be able to strum all 6 strings either at once or indepen-
dently

• Be able to press frets to play individual notes
• Use 3D Printed assembly parts

III. TECHNOLOGY INVESTIGATION

The following section follows the thought process behind
our selection for parts. It describes the types of technologies
we’ve looked into and the parts that seemed most favorable for
our project as a result. This is largely dictated by our goals (i.e,
low weight, cost), further criteria are elaborated upon case-by-
case.

A. Power Source

1) TalentCell Rechargeable 12V 6000mAh: Battery Packs
refer to batteries that are often used to charge mobile devices.
Specifically, the battery pack mentioned here features a 12 volt
output with 6000mAh, which should yield 42 minutes worth
of use at max current draw. Realistically this current draw
will be much lower (say, 25%), so we can estimate it to be
around 3 hours worth of operation. The issue arises with the
observation that this, and all other mobile device battery packs
that we could find, only output around 2A - 3A of current.
Placing them in parallel would alleviate this but buying 3 of
this brand would start to weigh heavily on our budget. This
would not work for our project with the current demands of
our motors and the scope of our budget, so we decided to pass
over this option.

2) Amazon Basics 9 Volt Everyday Alkaline Batteries: 9
Volt batteries see use for applications that require high voltage
and power, which accurately describes the power demands
of our project. However, the cost-to-capacity ratio of these
batteries are notable; alkaline 9 volts typically have a capacity
of 550mAh, and assuming our average current draw to be
approx. 25% of our max we have a demand of 2.15A. This
yields 15 minutes of powering our device, which is extremely
low - not to mention the excessive current could damage
the batteries. Both of these problems could be solved by
placing the batteries in parallel - although the max current
characteristics of this battery were not able to be found, 8 9V
batteries in parallel should be enough to maintain our average
current demand for a reasonable amount of time.

3) Lead Acid - 12V 8A ExpertPower: The 12V 8A Emer-
gency Light Battery from Mighty Max Batteries boasts an
impressive 12V output voltage and 8A output current. This
falls within our reasonably expected tolerances for current -
while it would be nice to break 8.6A and be 100% certain,
we can safely assume that the current will be well below this
value. Of note is the 8Ah capacity, which falls within our
expectations for power supply longevity in a single convenient
package. This would yield us a little less than an hour’s
worth of operation at max current draw, and if we were to
approximate the average current at 25% of the max as we
have done for the 9 Volts this would yield around 4 hours of
operation for the device. The price is also affordable, being
$29.05 when purchased from Amazon. - The profile is small,

being a rectangular design that is 3.94x5.94in with a depth of
2.56in. Ultimately, this is the most promising power supply
that we will be considering.

B. Power Supply - Regulation

1) LP2985: The LP2985 is a linear voltage regulator made
by TI that is characterized explicitly by its low-dropout volt-
age. It comes in 8 fixed output voltages - the ones we will
be interested in are the 3.3V, 5V and 10V options. The low
dropout characteristics (typically 0.27-0.28V at its max current
of 150mA) means that we would be able to comfortably limit
the output of our power supply to 10.5V minimum, with the
extra .2V as additional tolerance. In addition, the pricing is
remarkably affordable - From TI, the LP2985 is available by
the reel in quantities of 1 to 99 for $0.359. A discrepancy exists
in our power output, however - The device is recommended to
be run such that it outputs a 150mA continuous load current,
and cursory research into the most popular servo on the market
(SG90) indicates an approximate running input current of
270mA. Thus, this device would fail to power even one motor
before failure. This could be circumvented if we use multiple
regulators for each component or implement current amplifier
circuits - both of these implementations would be impractical
due to space, cost and time restraints, so the LP2985 was not
considered.

2) TPS62992-Q1: The TPS62992-Q1 is a newer model of
Switching Regulator from TI. It is described by their datasheet
as a “Highly efficient, small, and flexible step-down DC-DC
converter that is easy to use.” Ease of use and implementation
will be important for our project, as the limited time and
cost scope means that utilizing components which take less
time to accommodate is preferable. Step-down (or, “buck”)
converters will likely be preferable for our motor assembly,
as the 8.1A current draw is a considerable hurdle that can
be solved by converting excess voltage to current. The device
features above-average safety characteristics, with overcurrent
and over-temperature protection. This further cemented the
part as a good candidate for our microcontroller, as any failures
that could damage the microcontroller would be catastrophic
for our project and lead to significant time and cost penalties.
However, we run into an issue when we analyze the input
characteristics. The input voltage range of the device is typ-
ically recommended to be between 3-10V. This is an issue
since our supply voltage is most likely going to be 12V. It is
not guaranteed that this will cause an issue with our parts, as
the device is still able to be ran at 12V - however, it would
inject some uncertainty as to the maintainability of the part
itself. Ultimately, we decided against the use of this part due
to this.

3) LM2576: The LM2576 Regulator comes in multiple
configurations, but the one we considered is the adjustable
version which utilizes a feedback voltage divider. This allows
us the flexibility to introduce new parts to the project in the
pursuit of stretch goals. The biggest motivating factor for the
selection of this regulator is the fact that we’ve used it before;
the LM2576 is the exact model of regulator used in Electronics

1 and 2 labs. This gives us a wealth of material to look back
on in the event of circuit failure. The regulators can supply up
to 3 amps, yet are cheap enough to allow for the utilization of
multiple ICs. The LM2576 also comes in multiple packages,
one of which can be utilized for breadboards. Thus, this
regulator looked the most promising for our project.

Fig. 1. Output from the regulator.

C. Micro Controller

1) ESP32 Development Board: The ESP 32 Dev Board
is a through hole board in that helps us utilize some of the
functions from the ESP 32 micro controller, our goal for this
board is to use the i2c pins on it paired with the servo drivers.
We went with this specific micro controller initially due to the
high number of output pins as well as the controllers ability
to process micro-python, a version of python that is used on
micro controllers. Now we will be just using a few of the pins
as our circuit design has become simpler. Our ESP 32 will be
able to store midi files up to 4 MB. Another goal we have
is to have a user interface communicate with the ESP 32 via
WiFi in order to have some basic operations performed on the
computer. We will be using the ESP32S 38-pin version of the
ESP32.

2) ESP32 Benchmark: From earlier prototyping, we saw
the need to benchmark the performance of the ESP32 proces-
sor operating under Micropython code versus Arduino C code.
We wrote some simple code that does 1 million multiplications
and additions and measures the time taken per operation.
For the Micropython code, it took 19,373 nanoseconds per
operation, which is roughly 50,000 operations per second. For
the Arduino C code, it took 8.4 nanoseconds per operation,
which is roughly 120 million operations per second. The
Arduino C speed more closely matches the expected speed
of the processor, and is 2,300 times faster than Micropython.
There was some difficulty in getting the Arduino C result,
since C compilers like to make optimizations to simple tests
that pretty much make them instant.

D. Motors

1) Solenoid actuator: Solenoids essentially act as a
push/pull arm, in this manner this is potentially the best
choice for pressing down on frets. Solenoids would be more
efficient than the servos due to the linear path they take,
there is less room for error or chance it hits a neighboring
fret. Some challenges that come with the solenoid is the cost
and availability of them, they can vary from 5-20 dollars per
solenoid which gets pricey with 29 needed in order to play
frets. Additionally, solenoids typically have just 2 terminals,

meaning we will need to use transistors or motor drivers like
the L293 to isolate the control signals from the power.

2) Servos: Servos are the easiest motors to work with. They
have separate connections for power and control, so it’s trivial
to isolate the two. The power is simply 5V - likely, this will
make up the bulk of our power demand. The control signal
is a PWM (pulse-width modulation) signal with a period of
20ms and an on-time of roughly 0.6 to 2.3 ms. The duty
cycle determines the angle that the servo will attempt to move
towards. Servos are also very cheap, about 2 dollars each.

Servo Solenoid
less than 2
dollars

more than 9
dollars

requires 4-6V requires 12V
Has to be
adapted
for linear
actuation

Already a lin-
ear actuator

Actuation is
slower than a
solenoid

fast actuation

E. Servo Drivers

1) 74HC595 Shift Register: For our first attempt at building
the Servo driver circuit we were using the 74HC595N shift
register to control the signals for the servos, we went with this
originally because it was a popular choice for Serial In Parallel
Out communication which had 8 output pins and connected to
the micro controller with 3 wires with the possibility of wiring
them together in a daisy chain configuration since we would
need four of them to fit all thirty of our servos onto them.
After some success with testing the shift registers they would
fail or the signal it received would be inaccurate we decided
to switch to a more reliable method of servo control.

2) PCA9685 Servo Shield: This board uses an I2C con-
nection to the micro controller to control 16 servos per board
the communication with this board is much easier to manage
compared to the shift registers and our research shown that
similar devices to our self playing guitar also make use of
servo shields. This board can get the information for the
turning angle of the servo from the micro controller and the
board will generate the PWM signal automatically. We would
need two of them for our project and they are more expensive
than the shift registers are.

IV. RELEVANT CONSTRAINTS & STANDARDS

The following section outlines the constraints and standards
that we will have to work with and around. They consist
not only of strict requirements to follow from Senior Design
but also industry practices that will have to be designed to.
Additionally, some standards are simply best practices that
can be used to guide our design and ensure that everything
works as intended. The specifics of each standard will not be
elaborated upon in depth, but rather a general overview of
the standard as a whole and how it will be factored into our
project will be detailed in the sections below.

A. PCB Standards

The standards that govern the entirety of general PCB
design are outlined within the IPC-2220 Family. The IPC
(or, Institute of Printed Circuits) Is a Standards Development
Organization (SDO) located in Bannockburn, Illinois that
seeks to standardize the design and production of electronic
equipment and assemblies. It is recognized worldwide, and
thus whatever PCBs we order are likely to follow these
standards closely - while our PCB will likely be routed by
a third party company, the onus is on us to design our boards
in such a way as to conform to these standards. The IPC-2221
standard specifically outlines the generic standards for a PCB
design, including specific parameters for component mounting
and interconnections. For our project, this standard is also
supplemented by the IPC-2222 standard which specifically
refers to Rigid PCBs (as opposed to Flex, MCM-L or HDI
boards). Clearance is a major consideration for PCB design.
Characteristics of schematic design such as parasitic capac-
itance and inductance mean that we will have to take into
the account the gap between individual parts and copper runs
- these considerations are well documented, and as a result
have been included in the IPC-2221 standard. The different
clearances within a PCB are categorized largely by what part
is under consideration, with each component having different
tolerances for trace clearance.

B. Soldering Standards

The inclusion of PCBs into our project naturally leads us
to the need for Soldering. The term “solder” refers to both
the action of creating permanent electrical junctions by use
of melting metal onto connections as well as the metal itself.
For hobbyist applications it is most utilized for connecting
PCBs to other components across a project - in order for our
components to be powered and communicate with one another
they need to be connected electrically, and by far soldering is
the most efficient way to accomplish this as individuals. The
standards that govern soldering components are largely defined
under the IPC J-STD-001 Standard, and define what types of
solder can be used for industrial applications as well as specify
what an exemplary solder connection should look like. These
standards are designed in order to ensure that connections
made throughout a project last as long as possible with as
little failure as possible, maximizing reliability of electrical
components. Under the J-STD-001 standard, a number of
general rules of thumb are outlined. These are more or less
for industry practices, but apply to our project as well as good
industry practices yield high quality results no matter who
complies.

C. WiFi Standards

The Self-Playing Guitar uses WiFi to connect to a server
for transferring files, selecting songs and initiating playing the
guitar. WiFi is covered by IEEE 802.11, The ESP32 model
that we are using is not compatible with IEEE 802.11ax or any
other WiFi standard that is 5GHz it does support 802.11b/g/n
standards of WiFi that are 2.4GHz this has been something

that has needed to be taken into consideration when testing
and using the Self-Playing Guitar.

D. Financial Constraints

When approaching this project the goal was to keep costs
low, this decision led to the implementation of the servo
motors and using linear actuation. The use of the servo motors
has led to some issues with power consumption as well as
reliability. The servos draw a high current and as we are using
a lot of servo motors this leads to high current for the circuit
overall. On average we find the current draw for a single servo
to run to be around 400 mA. This is something we had to
decide to live with as the cost of a servo is around $2 per servo,
and around $60 total for all servos. This project could be done
implemented easier using solenoids as they draw significantly
less current but in doing that we run into an issue with our
budget, it is simply not affordable for us to obtain solenoids
as they are about $10 per which would drive our cost up way
more than we are comfortable with. The servos are not the
only way we are constrained, the materials we use are made
out of wood which aesthetically is not very attractive. We have
ran into issues with our material as originally we had wood
for our linear actuation. Quickly after this we were forced to
move to a more robust material, acrylic. It would be fantastic
to make our project entirely out of acrylic however it is not
entirely necessarily essential.

V. FINAL HARDWARE & SOFTWARE DESIGN DETAILS

The following section outlines our final project design. This
will be the target configuration for our Final Presentation.

A. Mechanical Overview

For this project, custom mounting hardware was required to
attach the 30 servo motors to the guitar, and enable them to
fret and strum the guitar strings.

1) Fretting Mount: The first hurdle for the fretting mount
was fitting 6 servos across the width of the guitar neck. Not
even 3 servos could be placed side by side without being
too far apart to reach every other string. Thus, we decided
to mount the fretting servos in 3 layers, with 2 servos each.
Each successive layer would use long fretting ’sticks’ to extend
the actuation of the servo all the way down to the strings. The
bottom of the mount feature a panel with holes that guide the
sticks into the correct positions.

2) Strumming Mount: The strumming mount was much
easier to design and assemble. It consists of a simply bracket
that positions the servos above the strings. Near the sound hole,
the strings are further apart, allowing us to place 3 servos side
by side. We attached small plastic picks to the end of each
arm to get a consistent sound out of the guitar.

B. Electrical Overview

1) Power Supply: The total load that the project demands
from its power supply consists of the power demands of our
30 servos, 4 servo shields and ESP32. The servos each pull an
average of around 400-500mA when moving during testing.

The power supply will consist of 5 LM2576 Switching
Regulators configured to step down 12V from the power
source to 5V. As the LM2576 is not rated for back current,
the output node of each regulator will be isolated from one
another. 4 regulators are dedicated to powering 30 servos, 3 of
which power 8 of our 24 fretting servos and 1 which powers
our 6 strumming servos. Each regulator is rated to supply 3
Amps, and each fretting regulator will see a theoretical max
demand of 4 Amps. While this is suboptimal, there would be
no situation in which all 8 servos are moving at once for any
regulator. Thus, we can safely assume that our power demand
will be within tolerance for the regulator. The strumming
regulator is able to handle our 6 strumming servos at max
load. The last regulator will be dedicated to powering the
ESP32 and Vcc for the Servo Shields, the current load of
which is negligible.

2) PCB: The PCB contains the regulator circuits that will
power the project, as well as the ESP32 and I2C outputs.
Note that the ESP32 is integrated with its Devboard, and
the Devboard interfaces with the PCB using through-hole
connections. The PCB consists of two layers with ground
planes surrounding signal and power traces. The PCB takes
in power from our SLA battery through a Molex Mini-Fit Jr.
two-pin header and regulates it internally. 4 of the regulators
will be output through similar 2-pin molex headers, while the
last regulator output voltage powers the ESP32 through the
Devboard. The Devboard then outputs the I2C data from the
ESP32 to pins 21 (SCL) and 22 (SDA) which is then output
from the board using two pins of a 4-pin Molex header.
Alongside this, the voltage from the 5th regulator is output
alongside ground in order to power the control logic for the
4 Servo Shields.

Fig. 2. PCB board layout, note that this does not include parts

C. Programming & Code

1) MIDI Preprocessing: Before we can play a MIDI track
on the self playing guitar we need to first use a MIDI

preprocessing algorithm to make the song more guitar friendly.
The steps to doing this includes

• Inputting the MIDI file into the algorithm.
• Muting or Removing unplayable tracks such as drums

or any synth sounds and consolidate everything into one
track.

• Shift the range to accommodate the playable range of
notes since we are not using every fret.

• Loop through the track and ignore unplayable sounds and
compress the notes into the playable range and force the
overlapping notes occurring on the same string to end.

• On the 2nd pass through the loop it will remove notes
that happen to quickly to accommodate the hardware if
the movement speed is impossible.

Fig. 3. MIDI File before Preprocessing Algorithm

Fig. 4. MIDI File After Preprocessing algorithm

2) Micropython: For programming the micro controller we
are using Micropython which is a version of python that is
optimized for use on a micro controller. We will use this to
parse MIDI files for the micro controller to send signals to the
Self-Playing Guitar.

Fig. 5. Basic operation of the self playing guitar

VI. PROTOTYPE CONSTRUCTION & CODING

The following section describes the considerations required
to prototype our project. The purpose of our prototype is to

demonstrate a minimum viable product and proof-of-concept
so as to demonstrate both to ourselves and our advisors that
we are on the right track.

A. Circuit Prototyping

In order to prototype our project, we needed to have our
circuitry up and running before the final design takes shape,
consisting of our regulators alongside the datalines to our
Servo Shields. However, the monetary cost of PCB production
combined with the time investment in getting the board means
that creating PCBs is no small investment and impractical for
our prototype. Rather than having the PCBs made, we instead
elected to create the circuits using breadboards. Breadboarding
allows us to rapidly prototype our circuits as well as changing
them as needed, saving us a considerable amount of time. On
top of this, because of the availability of breadboards in both
the senior design lab and other labs across UCF, the cost of
prototyping becomes essentially free. This, however, did not
account for the cost of the parts needed to create the circuit.
Our components had to arrive before we were able to properly
prototype, thus it was paramount that components be ordered
ahead of time. However, we had to make considerations for
the type of components we will be ordering. Because the parts
we have considered are surface mount, replicating the circuitry
would be difficult on a breadboard. To account for this, we
only ordered and utilized a package for the LM2576 that was
able to be used on a breadboard. We supplemented this with
through-hole parts with the same values as those that would
be present in our final circuit in order to get our power supply
up and running. This would not have the same stability as our
final design, but would be good enough for basic actions from
the guitar.

VII. CONCLUSION

This project has had it’s share of difficulties through the
large amount of mechanical design we have had to incorporate.
However through these struggles we were able to gain a lot of
experience in disciplines not typically introduced to us in our
traditional course work. Throughout the duration of working
on this project we encountered plenty of setbacks. Our initial
planning we found potential solutions to both our strumming
mechanism as well as circuit design. Our first solution for
the strumming was ideally to use solenoids which we found
to be too expensive so we moved to wooden mounts which
were laser cut. We found this to be a sufficient solution to
our project. Our circuit design was where we struggled the
most, in doing initial research we though our best solution
to control our servo motors would be through shift registers.
This solution allows us to use the least amount of pins but also
have enough control signals to send to all the servo motors. In
basic testing we had some success in being able to control the
servos however we experienced several issues such as the shift
registers totaling failing or would send incorrect signals. This
is due to the current running through our circuit being high
relative to what the shift registers can handle as well as the
latency of the shift registers were not being able to control

the signals as precise as we are looking for. Unfortunately
for us we had a lot of time invested into this design before
deciding we couldn’t move forward with this reliably. Doing
some research from there we were able to find inspiration
from some people on YouTube who were using servos in a
similar way to us where we found servo shields which are
able to process 16 servos on one board with 1 voltage input.
Through using two of these we were able to simplify our
circuit significantly since the shift registers were using a lot
of wires making it messy. Our current design using the ESP 32
dev board as well as servo driver boards is one we are finding
a lot of success early on as we were able to demonstrate the
ability to play some simple songs using this circuit design on
a breadboard. Due to the simplicity of the circuit design we
believe our PCB design should work no problem on the first
try and from there the only thing for us to do is fine tune
our code and run some additional test trials. Through all our
setbacks and research done the project has gained us a lot of
much needed real world experience and team work skills that
will help us moving forward in the industry.

VIII. BIOGRAPHY

A. Pedro Contipelli

Pedro Contipelli is a senior at the University of Central
Florida majoring in Computer Science. He has many years of
programming experience in several languages such as Java,
Python, and C. His main academic interests include space
exploration, artificial intelligence, robotics, and philosophy.

B. Ethan Partidas

Ethan Partidas is a senior at the University of Central
Florida, pursuing a Bachelor’s degree in Computer Engineer-
ing. He has a wide range of experience, having competed in

mathematics and programming competitions, designed circuits
and 3D models for laboratory experiments, and researched
novel CAD algorithms for flow-based in-memory computing.
He continues to pursue learning a wide variety of skills and
topics.

C. Blake Cannoe

Blake Cannoe is a senior at the University of Central Florida
and is scheduled to graduate with a degree in Computer Engi-
neering on May 4th 2023. He is currently seeking employment.
His interest mostly lies in embedded systems.

D. Jonathan Catala

Jonathan Catala is currently a senior at the University of
Central Florida and will receive his Bachelor’s of Science in
Electrical Engineering in May of 2023. He has attended the
University of Central Florida for four years now and plans
to continue his Masters here. He is currently working as an
intern at LaserStar Technologies. His primary interests lie in
control systems, and signal processing.

E. Kyle Walker

Kyle Walker is a senior at the University of Central Florida
pursuing a Bachelor’s Degree with a major in Electrical
Engineering along the Comprehensive track. He is slated to
graduate May 4th 2023. Currently, he is contracted out to
Lockheed Martin on behalf of UCF as part of their College
Work Experience Program. While his interests were largely
undecided throughout university, he has developed an interest
in Power systems due both to this project and his time in
Lockheed.

	Introduction
	Project Description
	Overview
	Design Goals
	Objectives

	Technology Investigation
	Power Source
	TalentCell Rechargeable 12V 6000mAh
	Amazon Basics 9 Volt Everyday Alkaline Batteries
	Lead Acid - 12V 8A ExpertPower

	Power Supply - Regulation
	LP2985
	TPS62992-Q1
	LM2576

	Micro Controller
	ESP32 Development Board
	ESP32 Benchmark

	Motors
	Solenoid actuator
	Servos

	Servo Drivers
	74HC595 Shift Register
	PCA9685 Servo Shield

	Relevant Constraints & Standards
	PCB Standards
	Soldering Standards
	WiFi Standards
	Financial Constraints

	Final Hardware & Software Design Details
	Mechanical Overview
	Fretting Mount
	Strumming Mount

	Electrical Overview
	Power Supply
	PCB

	Programming & Code
	MIDI Preprocessing
	Micropython

	Prototype Construction & Coding
	Circuit Prototyping

	Conclusion
	Biography
	Pedro Contipelli
	Ethan Partidas
	Blake Cannoe
	Jonathan Catala
	Kyle Walker

